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ABSTRACT

Meridional neutral winds from the HWM87 empirical neutral wind model and

derived from predictions of the International Reference Ionosphere are compared with

neutral winds derived from ionosonde measurements of the height of the maximum

ionization of the F2-1ayer. The time period considered in this study is the SUNDIAL-2

campaign, 21 September through 5 October 1986. Neutral winds along magnetic

meridians have been derived from measurements by a global network of ionosondes,

and compared on a global scale with winds derived from similar quantities generated by

the International Reference Ionosphere and with the geomagnetically-northward

component of the winds from the HWM87 model. Global wind patterns from the three

sources are similar. Differences tend to be the result of local or transient phenomena

that are either too rapid to be described by the order of harmonics of the empirical

models, or are the result of temporal changes not reproduced by models based on

average conditions. A fit of median wind speeds to 24, 12, and 8-hour waves indicates

that a representation of the winds in the F-region that is based on periodic functions

can give an accurate estimate of the global meridional wind field.
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INTRODUCTION

An accurate estimate of the meridional neutral wind in the thermosphere is one

of the more important prerequisitesin any model of the F2 region of the ionosphere.

An inaccurate neutral wind value can change the height of the modelled F2 peak by

tens of kilometers. Unfortunately, there isa lack of global-scaleneutral wind

measurements, making itdifficultto verifythe models. Measurements have been

limited to infrequent and scattered observations by Fabry-Perot interferometers,values

derived from ion driftmeasurements by incoherent scatterradars and data from a few

optical instruments and mass spectrometers on satellites.This paper discusses two

models that are being developed that have the potential of providing predictions of

average wind conditions in the thermosphere. An exploratory study compares the winds

from these two models with meridional winds derived from ionosonde measurements.

The two methods considered here for deriving meridional neutral winds are the

1987 Horizontal Wind Model (HWM87) (Hedin et al.,1988), and a derivation based on

the height of the maximum ion density of the F2-region (hmF2), which uses a

combination of the hmF2 prediction from the InternationalReference Ionosphere (IRI)

(Rawer et al.,1978; Rawer and Ramanamurty, 1985) and a calculationof the

dependence of hmF2 on the neutral meridional wind by the Field Line Interhemispheric

Plasma Model (FLIP) (Richards and Torr, 1985; Young et al.,1980; Chandler et aL,

1983). Only HWM87 gives the wind speed directly.Winds from the IRI and FLIP

models were derived by considering the difference between the height of the F2 layer



as given by the IRI and the balance height, or the height of the F2 layer if there were

no neutral wind (Miller et al., 1986; Miller et at, 1987; Miller and Torr, 1987). Near

the height of the peak electron density of the F2 region the response of the layer to

changes in the wind is approximately linear (Rishbeth, 1966; Buonsanto, et al., 1989),

and can be modelled by the FLIP model.

the magnetic field affects the layer height.

Only the component of the wind parallel to

In this paper, the horizontal component of

the neutral wind along a geomagnetic meridian will be referred to as the meridional

wind.

WINDS FROM THE HWM87 MODEL

The HWM87 neutral wind model (Hedin et al., 1988) was developed from cross-

track wind measurements by the NATE mass spectrometer on the Atmospheric

Explorer-E satellite (AE-E), from zonal wind data from the WATS mass spectrometer

on the Dynamics Explorer-2 (DE-2) satellite, and from meridional wind data from

optical measurements of the Doppler shifts of atmospheric emissions as measured by

the FPI instrument of the DE-2 satellite. AE-E was in a near-equatorial orbit and DE-

2 was in a polar orbit. Coefficients for the model were determined by fitting wind data

to vector spherical harmonic base functions, in much the same way as was done for

scaler quantities in the MSIS neutral atmosphere model (Hedin, 1987). At present, the

HWM87 model includes annual and UT variations of the neutral wind at arbitrary

geographic locations. Dependence of wind velocities on magnetic activity is described



by a ratio to magnetically quiet conditions based on either the 24-hour A_ index or the

3-hour a_ index. No dependence on solar flux variability is presently included in the

model.

The HWM87 model provides geographically zonal and meridional components of

the neutral wind in the F region. The other two methods for deriving neutral winds

that are considered in this paper are sensitive only to the component of the wind that is

parallel to a geomagnetic meridian. The corresponding component of the wind from

the HWM87 model was found by projecting the wind vector onto the magnetic

meridian defined by the IGRF geomagnetic field model. The declination of the

geomagnetic field is less than about 20 degrees over most of the globe, but becomes

especially large in the Southern Hemisphere near 90 degrees east longitude.

WINDS INFERRED USING THE IRI AND FLIP MODELS

The height of the ionization maximum in the F2 layer (hmF2) is typically greater

at nighttime than daytime at mid-latitudes. The change in height is primarily the result

of pressure-induced neutral flow from the day side to the night side. The poleward

flow in the daytime pushes the layer down the magnetic field to lower altitudes;

similarly, the equatorward flow at night raises the layer.

At wind speeds that are typical in the F region, the response of the height of the

ionization layer to changes in the speed of the meridional component of the neutral

wind is approximately linear (Rishbeth, 1966; Buonsanto et al., 1989). Miller et al.
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(1986) took advantage of this linear relationship to develop a technique to derive the

neutral wind speed from measurements of hmF2. According to their method, the

neutral wind along the magnetic meridian is derived from a comparison of hmF2 and

the balance height, or the height where, in the absence of neutral winds, recombination

and diffusion alone determine the peak of the F2 layer would be located.

The FLIP Model (Richards and Torr, 1985; Young et al., 1980; Chandler et al.,

1983) is used to determine both the balance height (ho) and the ratio that expresses the

linear relationship between changes in layer height and changes in neutral wind speed

(_). The O+-O collision cross-section of Banks (1966) was used in the model

computation. Recent studies have suggested that the cross-section should be increased

by about a factor of 1.7 (Burnside, et al., 1987). If the larger value had been used in

this study, the variability of the winds that are derived from hmF2 would not be

affected, but their magnitudes would be reduced significantly (Buonsanto, et al., 1989).

Examples of the diurnal variation of ho and _, for conditions representative of

this study are shown in Figures 1 and 2. These examples are typical of mid-latitude

stations. Since the FLIP model is limited to regions of closed field lines and does not

include effects of convection electric fields, high and low latitudes are not included in

this study.

One of the basic parameters provided by the IRI is hmF2. The hmF2 estimates

are calculated from the CCIR maps of M(3000)F2, and include a correction for the

underlying ionization that is based on the ratio off oF2 to foE, (Rawer and
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Ramanamurty, 1985;Dudeney, 1983). Since hmF2, as given by the IRI, is based on an

empirical fit to data, it should represent average conditions in the ionosphere. An

estimate of the meridional neutral wind derived from hmF2 values from the IRI should

therefore represent the meridional neutral wind which, under the specified conditions,

would raise or lower the peak density from the balance height to the height predicted

by the IRI.

Figure 3 shows the layer height at one of the ionosonde sites used in this study.

The short dashes show the balance height, while the long dashes and solid lines are

hmF2 predicted by the IRI model and derived from ionosonde measurements of the

critical frequencies. The ionosonde values are 15-day medians of the derived hmF2 for

the SUNDIAL-2 measurement campaign. The meridional wind is derived from the

difference between hmF2 and ho, divided by _.

WINDS FROM IONOSONDE DATA

Meridional wind speed has been derived for the SUNDIAL-2 study using

ionosonde critical frequency measurements, providing a comparison to the two empirical

models discussed above. This was a moderately active period, with I_ ranging between

1 and 6 (Figure 4). hmf2 was derived from M(3000)F2 by the formula of Dudeney

(1983), which uses foE and foF2 to correct for effects of underlying ionization. Since

winds derived from the ionosonde data were to be compared with calculations based on

models representing average conditions, median values were found for the ionosonde



winds from all 15 days of the SUNDIAL-2 campaign.

Ionosonde data were obtained from the global ionosonde network and used

together with other ionosonde data collected in the SUNDIAL-2 campaign. The

network yields a broad coverage of the globe, and demonstrates one advantage of this

technique, in that a near-global picture of meridional winds can be derived.

COMPARISON OF WIND RESULTS

CONTOUR MAPS

Figures 5 through 7 are global representations of the meridional neutral wind at

0 UT from the three methods described above. A contour map of meridional neutral

wind speed for the middle of the SUNDIAL-2 campaign computed by the HWM87

model is presented in Figure 5. Figure 6 shows wind values derived from IRI

predictions of hmF2. Figure 7 shows contours of meridional neutral wind speed derived

from ionos,:nde critical-frequency measurements. The locations of ionosondes

contributing to Figure 7 are marked by the symbols.

An Ap of 13 was assumed for the HWM87 winds in Figure 5. This was the

median value for the fifteen days of the SUNDIAL-2 campaign. Figure 8 shows the

diurnal variation of the winds predicted by the HWM87 model for Poitiers, France for

equinox conditions, but using three different Ap values. The model indicates a strong

dependence of the winds on magnetic activity.
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Wind speeds from the IRI (Figure 6) were derived from predictions for

September and for October which were interpolated to September 28, the middle of

the SUNDIAL-2 campaign. Contours have not been extended to the polar region or

across the magnetic equator. In its present form, this technique for deriving neutral

winds is restricted to closed field lines and does not allow for the effects of convection

electric fields, and so is not valid near the magnetic dip equator or at high magnetic

latitudes.

Meridional wind speeds derived from ionosonde measurements (Figure 7) were

gridded directly from averages of the 15 days of the SUNDIAL-2 campaign. The

pattern is dependent on the distribution of data points. No attempt was made to fill in

the areas lacking in ionosonde data. Much greater differences are seen between the

Northern and Southern Hemispheres in Figure 7 than in the previous two figures.

Many of the differences are due to the large areas of the globe where there are no

ionosondes. The IRI results are also based on the ionosonde network and suffer from

the same uneven coverage.

The SUNDIAL-2 campaign was at equinox, and the three contour patterns

appear to be roughly symmetric about the equator. The strongest asymmetry is the

distortion of the contours by the offset of the geomagnetic equator. The fact that the

zero in the HWM87 model results shown in Figure 5 appears to follow the geomagnetic

equator indicates that this feature is not an artifact of the technique of deriving neutral

winds from ionospheric quantities, but is the result of ion drag on the motions of the
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neutral atmosphere.

All three wind patterns show a north-south asymmetry in the maximum wind

speed. This asymmetry is strongest at night. Local midnight is at 0 UT in the figures.

The nighttime wind toward the equator is greatest over Europe in each of the figures.

The daytime poleward wind appears to be strongest in the Southern Hemisphere in the

HWM87 predictions of Figure 5, although this is not supported by the other two

contour plots.

STATION-TO-STATION COMPARISON

The symbols in Figure 7 show the location of the ionosondes contributing to this

study. There are several combinations of stations that one could consider. Data from

two chains of stations are presented here to demonstrate latitudinal and longitudinal

variations in the results. The stations of these two chains are designated by the open

symbols in the figures.

Figure 9 shows the meridional wind speed for the series of stations at

approximately constant geographic latitude across northern Europe and Asia This chain

of ionosonde stations is designated by open circles in the Figure 7. The geographic

location is specified on Figure 9 after the station name. These stations are all about 50

degrees north geographic latitude, and geomagnetically near L = 2.7. The data are

plotted as a function of universal time. In each plot, ionosonde winds are shown by

stars, winds inferred from the IRI and FLIP models by a solid line, and winds from the
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HWM87 model by a dashed line. Local noon and midnight are marked by the open

and shaded circles, respectively.

Immediately apparent in this figure is the good agreement between the

ionosonde winds and the IRI winds. Since the wind is derived from each using the

same technique, this is equivalent to the statement that the average values of hmF2

during this period are reproduced very well by the IRI. One of the few consistent

departures from this agreement is the smaller night time southward wind that is

predicted by the IRI near 18 hours UT The abatement in the IRI wind appears to be

fixed at a constant Universal Time, and is possibly an artifact of the harmonic series

used to generate the CCIR maps for the IRI. There is also a sunrise peak in the

ionosonde wind immediately after it turns northward that is not present in the IRI.

Winds from the HWM87 model are characterized by slower variation at sunrise

and sunset, reflecting the harmonic base functions which are expanded to third order in

the HWM87 model. The rapid changes at sunrise and sunset and other features lasting

only a few hours would require an increase in the order of the harmonic functions used

in the model.

Figure 10 shows winds from a meridional chain of stations through Japan and

Australia designated by diamonds in the contour plots. The same comments can be

made here concerning the inability of the HWM87 model to follow the rapid temporal

variations. However, the amplitude of the diurnal variation is generally reproduced by

all three results. The tendency of the poleward wind to remain constant during the day
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that is seenin the ionosondewinds at the northern stations is also apparent in the low

latitude stations. This figure also showsa significant semi-diurnal component at low

latitude.

The abatement in the nighttime wind that occursat 18UT in Figure 9 is also

apparent in Figure 10. This feature is common to all latitudes in the winds from the

IRI, and, as was stated, may be an artifact of the harmonics used in the model.

However, it is matched by the data in the Southern Hemisphere, beginning at Vanimo

and continuing south through much of Australia. The fact that this feature is

consistentlypresent through 15 days indicates that it is likely to be tidal in origin.

FOURIER COMPONENTS IN THE WIND DATA

An estimation of the tidal components in the data was made to see if this

nighttime abatement might be the result of 12-and 8-hour tides, as it is at Arecibo

(Burnside, et al., 1983; Crary and Forbes, 1986). This was done by fitting the median

winds derived from ionosonde data to the sum of three sine functions having 24-, 12-,

and 8-hour periods and the 24-hour mean value. Figure 11 shows the result for

Brisbane. The stars are the ionosonde wind medians, the solid line is the fit, the

dashed lines are, in order of shortening dashed, the 24, 12, and 8-hour sinusoids. The

24-hour mean value was also included in the fit. The 24-hour mean of the data shown

in Figure 11 is -1.1 m/s.
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Figure 12 shows the amplitude of the three waves for a sequence of northern

mid-latitude ionosonde stations surrounding the globe. The geographic locations of

these stations are shown in Figure 13. The stations are centered at about 50 degrees

north latitude, although there are large differences in latitudes. The amplitude of each

component is strongly dependent on the latitude of the station; the farther the station is

from the equator, the greater is the amplitude of the wave.

Figure 14 shows the relative phases of the three sine waves. The fit was made

to data that were specified by UT. In this case, the phase is determined by the

universal time when the sine function crosses zero, from negative (southward) to

positive (northward). The downward progression of the phases in Figure 14 are a

result of the increasing difference between UT and LT as a function of longitude. The

three sinusoids maintain nearly the same phase relative to each other at all of these

stations.

Similar plots of southern hemisphere stations are shown in Figure 15, 16, and 17.

There are fewer stations from which to select a chain in the southern hemisphere, and

the stations that are available cover a much greater range in latitude (Figure 16). This

is reflected in the large range of amplitudes shown in Figure i5. The phase curves

shown in Figure 17 show that constant relative phase is also maintained in the Southern

Hemisphere. However, the phases at any given longitude differ by 180 degrees

between Northern and Southern Hemispheres for all three waves.
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Similar plots for the meridional chain of stations of Figure 10 are shown in

Figures 18-20. The amplitude of the 24-hour component (Fig. 18) is seen to increase

with latitude, as expected based on the general flow pattern away from the region of

solar heating. There is a node in this component at the equator. The amplitudes of

the 12 and 8 hour components have small equatorial maxima which seems to be at

odds with the latitudinal variation of the amplitudes of these components for the

longitudinal stations shown in Figures 12 and 15. Nodes appear in the 12 and 8 hour

components at about -40 degrees and +40 degrees, respectively. The nodes are defined

by the amplitude going to zero at a point where a phase reversal occurs. The stations

that were chosen for the constant-latitude chains were apparently poleward of the

latitudes of the nodes in the 12 and 8 hour components.

One result of the phase of the 12 and 8 hour components remaining constant

across the equator can be seen in the comparison of a fit to the winds from the

ionosonde at Yamagawa (Figure 21) with the fit to the Brisbane data shown in Figure

11. In the Southern Hemisphere, the shorter-period sinusoids are out of phase with the

24-hour components at night, resulting in an abatement of the equatorward wind. In

the Northern Hemisphere they are in phase at night, giving one peak in the nighttime

wind.
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CONCLUSIONS

For most applications, the HWM87 model gives a representation of meridional

wind that is in good agreement with average winds derived from hmF2, but with a

minimum of computational effort. However, there are rapid variations that are derived

with consistency from ionosonde data that depart significantly from the low-order

harmonic representation of the HWM87 model.

Winds derived from IRI values of hmF2 agree remarkably well with average

winds derived from ionosonde measurements during the SUNDIAL-2 campaign. If

these winds can be shown to be reliable in a general sense, this result will provide the

opportunity of a global comparison for results of global circulation models.

A least-squares fit of median winds derived from ionosonde data demonstrates

that a fairly simple representation Of the winds in the F-region that is based on periodic

base functions can give an accurate estimate of the average meridional wind in the

thermosphere. More work is needed to extend this to a global description. It does,

however, support the concept used by the HWM87 model, that an accurate estimate of

the wind at F-region heights can be described using vector spherical harmonics.
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FIGURE CAPTIONS

Figure 1. Modelled height of the F2-1ayer in the absence of neutral winds for six

ionosonde stations at approximately the same longitude. Geographic

locations of the stations are included in Figure 10. The median magnetic
and solar indices for the SUNDIAL-2 period were used in the model.

Figure 2. Modelled ratio (o,) of the change in layer height with respect to the

change in the neutral meridional wind speed for the six stations

considered in Figure 1.

Figure 3. F2-1ayer height at Tokyo at the time of the SUNDIAL-2 campaign.

Short dashes show the balance height computed by the FLIP model.

Longer dashes are average hmF2 values for the IRI predictions for

September and October, 1986. The solid line is the 15-day median of

hmF2 derived from ionosonde critical frequency measurements.

Figure 4. I_ values for the SUNDIAL-2 campaign.

Figure 5. Meridional neutral wind speed (m/s) along magnetic meridians from the

HWM87 model. Input parameters are appropriate for 28 September

!986, at 0 UT.

Figure 6. Meridional neutral wind speed (m/s) at 0 UT, derived from IRI model

calculations of hmF2. Positive winds are northward along the magnetic

meridian. IRI model parameters for September and October, 1986,

were interpolated to September 28.

Figure 7. Meridional neutral wind speed (re�s) at 0 UT derived from ionosonde

critical frequencies. Wind speeds have been averaged over 15 days, from

21 September through 5 October 1986. Symbols mark the locations of
ionosondes.

Figure 8. Neutral wind from the HWM87 model projected onto the magnetic

meridian, showing the dependence of the wind speed on magnetic

activity.

Figure 9. Meridional neutral wind speed (re�s) at a chain of ionosonde stations at

approximately constant latitude. Positive winds are northward. Stars are

ionosonde winds; solid line, IRI winds; and dashed line, HWM87 winds.

Open and shaded circles mark local noon and midnight.

Figure 10. Same as Figure 9 for a meridional chain of stations.



Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.
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Least-squares fit of three sinusoids and a 24-hour mean value to median
wind values derived from ionosonde data from the Brisbane ionosonde

(27.5 S, 152.9). The three sinusoids comprising the fit are shown by the
dashed lines. The 24-hour mean value of these data is -1.1 m/s.

Amplitudes of the sine waves from least-squares fits to ionosonde winds

from a chain of stations near 50 degrees north latitude.

Locations of ionosondes whose data are used for Figures 12 and 14.

Phases of the sine waves from least-squares fits to ionosonde winds from

a chain of stations near 50 degrees north latitude. Phase is computed

relative to 0 hours UT. Downward progression of phase is the result of
the difference between Local Time and Universal Time.

Same as Figure 12 for stations in the Southern Hemisphere. The range

of latitudes is much greater for the Southern Hemisphere chain of

stations, resulting in a large range of amplitudes.

Locations of ionosondes whose data are used for Figures 15 and 17.

Same as Figure 14, for stations in the Southern Hemisphere. The phase

of each curve differs from the phase of the corresponding curve in the

Northern Hemisphere by about 180 degrees.

Same as Figure 12 for a meridional chain of stations.

Locations of ionosondes whose data are used for Figures 18 and 20.

Same as Figure 14 for a meridional chain of stations. Nodes are

recognized in the curves by a zero in amplitude (Figure 18) accompanied

by a phase reversal. Nodes can be seen in the 24-hour wave near the

equator, in the 12-hour wave near 40°S, and in the 8-hour wave near
40oN.

Same as Figure 11 for data from the Yamagawa ionosonde (31.2°N,

130.6oE).
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dashes are average hmF2 values for the IRI predictions for September

and October, 1986. The solid line is the 15-day median of hmF2 derived

from ionosonde critical frequency measurements.
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Fig. 5. Meridional neutral wind speed (m/s) along magnetic meridians from the
HWM87 model. Input parameters are appropriate for 28 September

1986, at 0 LIT.



9O

Z
O

k

60

3O

__j -6o

_(
30 60 90 120 150 180 210

Longitude /
240 270

°E
300

0
0

330 360

Fig. 6. Meridional neutral wind speed (m/s) at 0 LIT, derived from IRI model

calculations of hmF2. Positive winds are northward along the magnetic

meridian. IRI model parameters for September and October, 1986, were

interpolated to September 28.
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Fig. 7. Meridional neutral wind speed (m/s) at 0 UT derived from ionosonde

critical frequencies. Wind speeds have been averaged over 15 days, from

21 September through 5 October 1986. Symbols mark the locations of
ionosondes.
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Fig. 15. Same as Figure 12 for stations in the Southern Hemisphere. The range

of latitudes is much greater for the Southern Hemisphere chain of

stations, resulting in a large range of amplitudes.
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Fig. 17. Same as Figure 14, for stations in the Southern Hemisphere. The phase

of each curve differs from the phase of the corresponding curve in the

Northern Hemisphere by about 180 degrees.
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Fig. 18. Same as Figure 12 for a meridional chain of stations.
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equator, in the 12-hour wave near 40"S, and in the 8-hour wave near
400N.
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